

SpringCM SSO and User

Management Guide

March 2013

© 2013 SpringCMSM 2

OVERVIEW... 4

SPRINGCM ADDRESS BOOK ... 5

ADDRESS BOOK ITEMS .. 5

ENABLE/DISABLE USERS AND ACTIVATION ... 6

PASSWORD POLICIES ... 8

USER SYNCHRONIZATION ... 10

BULK USER IMPORT CSV FILE AND DOCUMENT RULE .. 10

CSV Format ... 10

Processing via Address Book Upload .. 11

Document Rule Configuration ... 12

WEB SERVICES .. 19

Authentication ... 19

Create, Delete, Update, and Load Users and Groups .. 20

Sample Operations ... 21

SALESFORCE USER SYNCHRONIZATION .. 23

Step 1 – Set Field-Level Security on SpringCM user components .. 24

Step 2 – Apply SpringCM user components to user page layout .. 25

Step 3 – Configure SpringCM settings for each user ... 26

Step 4 – Mapping Salesforce users to SpringCM security groups .. 27

Step 5 – Enable user sync .. 28

SINGLE SIGN-ON (SSO) .. 29

OVERVIEW ... 29

SAML 2.0 FEDERATED AUTHENTICATION .. 29

Configuring SpringCM for an Identity Provider ... 30

Configuring an Identity Provider for SpringCM ... 31

INVOKING SP-INITIATED SSO .. 33

SAMPLE IDENTITY PROVIDER CONFIGURATIONS .. 34

Active Directory Federation Services (ADFS) .. 34

Salesforce Identity Provider ... 42

OneLogin .. 46

Ping Identity ... 46

SPRINGCM PROPRIETARY SALESFORCE SSO .. 47

Salesforce SSO from the UI ... 47

© 2013 SpringCMSM 3

SALESFORCE SSO VS. SALESFORCE AS A SAML IDENTITY PROVIDER .. 48

SPRINGCM API'S AND SINGLE SIGN ON ... 49

Salesforce SSO API Authentication .. 49

OAuth 2.0 ... 50

SpringCM User Keys ... 50

MIXING SSO AND PASSWORD LOGIN .. 53

SAML SSO FOR SPRINGCM MOBILE, EDIT, SCAN AND SYNC .. 55

APPENDIX A: C# .NET USER MANAGEMENT SAMPLE CODE .. 56

APPENDIX B: JAVA USER MANAGEMENT SAMPLE CODE .. 59

APPENDIX C: PHP USER MANAGEMENT SAMPLE CODE.. 62

© 2013 SpringCMSM 4

Overview

The management of users and what they are authorized to do in an account is an important consideration of any

SpringCM implementation. Regular maintenance of a SpringCM customer account includes periodically adding,

deleting, and updating users and groups within the account. Other user management related tasks include

password maintenance, user profile updates, and group membership assignment. This document provides an

overview of user management within a SpringCM account, outlines best practices for synchronizing an existing

customer user repository with a SpringCM account, and provides a methodology for implementing authentication

via Single Sign-On (SSO) between the customer's environment and SpringCM.

In SpringCM, the Address Book is the primary interface for managing user creation and deletion, password

management, group membership, roles, user profile information, and distribution groups. As SpringCM is a cloud

based vendor, the Address Book provides everything a customer implementation needs to provide secure content

to its end users without requiring any additional infrastructure in the customer's environment. When a customer

chooses to do all of their user management directly in SpringCM, the management of users, groups, passwords,

and profiles is done directly in the SpringCM Address Book user interface by an account administrator.

However, in many cases, SpringCM customers have already made a significant investment in creating and

managing an enterprise user store as part of their local intranet, commonly an instance of Active Directory, an

LDAP compliant directory, or custom database. Often times, when customers first implement SpringCM, the

community of users granted access to the account may be comprised of a subset of the users in the enterprise

repository as well as users that are not part of the enterprise repository such as contractors and partners. In this

scenario, customers often will opt to maintain users in two places, managing authentication and authorization for

applications hosted in the local intranet through the enterprise user store and manage SpringCM users through

the SpringCM administrative user interface.

In other cases however, customers do not want to manage users, group membership, and passwords in two

different places and find it advantageous to leverage their existing enterprise user repository as part of their

SpringCM implementation. In this scenario, SpringCM offers multiple integration methods for synchronizing

users, groups, and profile information from a customer enterprise user repository to the SpringCM Address Book.

Additionally, a SpringCM account can optionally enable Single Sign-On (SSO) so that users will not have to keep

a separate password to log into their SpringCM account. With SSO in place, authentication and password

management is always delegated to infrastructure managed by the customer or a cloud based identity provider.

The following section of this document gives an overview of managing users via the SpringCM administrative user

interface and the remaining sections cover integration options and samples for user synchronization and Single

Sign-On with an existing customer enterprise user repository.

© 2013 SpringCMSM 5

SpringCM Address Book

Before designing an integration with SpringCM for user synchronization or SSO, it is helpful to have a

fundamental understanding of the SpringCM Address Book and how user's are managed within SpringCM. The

Address Book is accessed via a top level tab in SpringCM. A typical view of it is depicted in Figure 1.

Figure 1. The SpringCM Address Book

Address Book Items

The Address Book allows you to create and manage four different top level items:

 User -- Users are members of the SpringCM account who will authenticate via the SpringCM login page

or SSO and participate in routine activities such as document management and workflow.

 Contact -- A contact is information about a person that does not directly login or access the SpringCM

account directly. The contact information is used to allow SpringCM users to easily distribute documents

via email or fax.

 Distribution Group -- Distribution Groups can contain Contacts or Users and are used to easily distribute

documents via email and fax to a group of people.

 Security Group -- Security groups are used to provide authorization in SpringCM. Groups can contain

one or more users and are then used to provide View, Edit, Create, and Delete access to documents and

folders.

© 2013 SpringCMSM 6

In addition to contacts, users, and groups, another important item managed in the Address Book is a user's role.

Roles determine actions that user can take in the account. There are 5 roles in SpringCM:

 Guest -- only view access to documents

 Limited Subscriber -- Similar to guests, but can participate in Advanced Workflow

 Full Subscriber -- Complete access to document management features. Most users will be configured

with this role.

 User Administrator -- Complete access to document management features and the ability to perform

some administrative tasks, such as creating users and document rules.

 Super Administrator -- Complete access to document management features and full administrative

power including managing user security. There should generally only be one or a few Super

Administrators per account.

SpringCM allows roles to be used to set security on documents and folders; however, best practices recommend

using security groups for this purpose.

Best Practice: A common best practice for users that have Super Administrator responsibility is to maintain two

user logins. The user's normal day-to-day login is created with a role of "Full Subscriber", and a second, special

login is created that the user only uses when they have to do account administration. This keeps the user from

inadvertently making changes as part of their day to day activities in the account.

Enable/Disable Users and Activation

SpringCM will optionally allow you to set an Enabled From and Enabled Until date. If they are left blank, users

will always be allowed to access the account. If the dates are set, users will only be allowed to access the

account when the current date is between the from and until dates. This will allow you to create users, but not

allow them to access an account until some point in the future, such as a go live date. If you create a user with a

date in the future in the Enabled From field and choose the Send Activation E-Mail box, the email will not go out

to user until the date specified in the Enabled From date field is reached.

A second common scenario is that you may want to create a user and only give them temporary access to the

account, such as is often the case when using contractors or third parties that need access to your SpringCM

account for designated period of time. In this case, you specify an end date in the Enabled Until box and the

user will no longer have access to the account when the date is reached. You may set both an Enabled From

and an Enabled Until, but it is not required that you set both. For example, you may create a user with a blank

© 2013 SpringCMSM 7

Enabled From date and an Enabled Until date 3 months in the future. This will give the user immediate access

to the account and then automatically remove access in 3 months time.

Enabled/Disabled is separate, unrelated, concept from a user's Status, which is either Active or Inactive.

Active/Inactive applies to the user across all accounts that they have access to and refers to the status of the user

when they are first created and sent an activation email. They will remain Inactive until they click the link in their

activation email and set a password, at which point they will be become Active. In certain user sync scenarios

described later in this document, activation emails are not sent to the user and they may be shown as Active

immediately upon creation. Users may not SSO to an account while they are Disabled, however SSO will still

work if a user has a status of Inactive.

© 2013 SpringCMSM 8

Password Policies

SpringCM also provides facilities for password management. Password policies are set by a Super Administrator

and are configured by choosing the Preferences tab and then choosing the Security sub-tab and navigating to

the Passwords section. Figure 2 shows the options for setting password polices for an account.

Figure 2. SpringCM password policy configuration

Additionally, the Security section of the Preferences tab has other password related settings such as the number

of consecutive failed logins allowed before locking an account and IP Address and time based login restrictions.

© 2013 SpringCMSM 9

Reference:

Further information on managing the Address Book can be obtained from SpringCM's online knowledge base.

The following list contains link to the most pertinent articles:

Account Contact -- http://www.springcm.com/knowledge-article/address-book/account-contact

Address Book Workspace -- http://www.springcm.com/knowledge-article/address-book/address-book-workspace

Change User Role -- http://www.springcm.com/knowledge-articles/address-book/change-user-role

Create Contact -- http://www.springcm.com/knowledge-article/address-book/create-contact

Create User -- http://www.springcm.com/knowledge-article/address-book/create-user

Distribution Groups -- http://www.springcm.com/knowledge-article/address-book/distribution-groups

Edit Users and Contacts -- http://www.springcm.com/knowledge-article/address-book/edit-users-and-contacts

Personas -- http://www.springcm.com/knowledge-articles/address-book/personas

Private Contact Entries -- http://www.springcm.com/knowledge-article/address-book/private-contacts-entries

Resend Account Activation Email -- http://www.springcm.com/knowledge-article/address-book/resend-account-

activation-email

Reset Password -- http://www.springcm.com/knowledge-articles/address-book/reset-password

Security Groups -- http://www.springcm.com/knowledge-articles/address-book/security-groups

Share Contacts -- http://www.springcm.com/knowledge-article/address-book/share-contacts

http://www.springcm.com/knowledge-article/address-book/account-contact
http://www.springcm.com/knowledge-article/address-book/address-book-workspace
http://www.springcm.com/knowledge-articles/address-book/change-user-role
http://www.springcm.com/knowledge-article/address-book/create-contact
http://www.springcm.com/knowledge-article/address-book/create-user
http://www.springcm.com/knowledge-article/address-book/distribution-groups
http://www.springcm.com/knowledge-article/address-book/edit-users-and-contacts
http://www.springcm.com/knowledge-articles/address-book/personas
http://www.springcm.com/knowledge-article/address-book/private-contacts-entries
http://www.springcm.com/knowledge-article/address-book/resend-account-activation-email
http://www.springcm.com/knowledge-article/address-book/resend-account-activation-email
http://www.springcm.com/knowledge-articles/address-book/reset-password
http://www.springcm.com/knowledge-articles/address-book/security-groups
http://www.springcm.com/knowledge-article/address-book/share-contacts

© 2013 SpringCMSM 10

User Synchronization

SpringCM offers three integration methodologies for the synchronization of users and groups from an enterprise

user repository to the SpringCM Address Book. The three methods are:

1. Bulk loading via predefined CSV formats

2. SOAP based Web services

3. Synchronization from Salesforce

Note: The first 2 methods listed above do not involve directly connecting SpringCM to an internal LDAP or Active

Directory instance. They first require the data to be queried from the repository and then pushed via web services

or CSV. With the third option, SpringCM will directly connect to Salesforce for synchronization.

All options are described in detail in this section.

Bulk User Import CSV File and Document Rule

Web services, described in the following section, provide quite a bit of functionality to maintain the Address Book

programmatically. However, some organizations may not have the resources for building and maintaining this

type of integration between their enterprise user repository and SpringCM.

Fortunately, SpringCM also offers a non programmatic way of synchronizing an enterprise user repository with the

Address Book. SpringCM provides a standard CSV format that can be used to create users, delete users, create

groups, and update group memberships. The CSV may be uploaded directly in the Address Book user interface

or triggered via a Bulk User Import Document Rule that is often used in conjunction with FTP/SFTP. The CSV

file may be generated manually in tool like Microsoft Excel, or scripted against a source repository. Some

scripting examples are shown later in this section.

CSV Format

The first row of the CSV file must contain the headers describing each column's data. The headers can be the

following:

 Email -- The email address of the user. This is always required.

 FirstName -- First name of the user

 LastName -- Last name of the user

 Role -- The users role. If omitted for a new user, the user will be created with the role of "Full

Subscriber". If updating the user, they will maintain their current role.

© 2013 SpringCMSM 11

 Groups -- This is a pipe(‘|’) delimited list of the group names that the user on the line is a member of.

The user will be removed from any groups they are currently a member of that are not in the list and will

be added to any new groups in the list. If the group name does not exist in the account, the group will

automatically be created and the user will then be added as a member.

 Active -- Valid values for this field is either "true" or "false". A value of "true" means they belong in the

Address Book, and false means that they will be deleted.

 Title -- The user's title that will show in the address book.

 Department -- The user's department that will show up in the address book.

 Company -- The user's company that will show up in the address book.

 Address1 -- The user's address line 1 that will show up in the address book.

 Address2 -- The user's address line 2 that will show up in the address book.

 Address3 -- The user's address line 3 that will show up in the address book.

 City -- The user's city that will show up in the address book.

 State -- The user's state/province that will show up in the address book.

 PostalCode -- The user's postal code that will show up in the address book.

 Country -- The user's country that will show up in the address book. Should be a valid country name

from the address book's country drop down list.

 PhoneNumber -- The user's phone number that will show up in the address book.

 FaxNumber - The user's fax number that will show up in the address book.

 Persona -- The user's persona, should a valid name of a persona already created in the account.

 ManagedBy -- The user's manager, should be a valid email address of a user in the account.

 SendActivationEmail -- Valid values for this field is either "true" or "false". Indicates if activation email

will be sent to created user.

 EnabledStartDate -- The start date when this user can access the account.

 EnabledEndDate -- The end date when this user can access the account.

Processing via Address Book Upload

Once a CSV file is created, it may be uploaded directly in the Address Book user interface. On the Address Book

tab choose Address Book>Bulk Import Users. You will be taken to a new screen and prompted to upload your

CSV. If any errors or warnings occur, SpringCM will email you with a detailed log of the data issues encountered

while processing the CSV.

© 2013 SpringCMSM 12

Document Rule Configuration

To setup an account to process bulk user import formatted CSV files, first create a folder in SpringCM that will be

used as the destination for uploading the inbound CSV files. Best practices dictate that this folder should only be

accessible by Super Administrators and only used to upload bulk user import CSVs. Once the folder is created,

navigate to Preferences, click on Smart Rules and then choose Rule-> New Document Rule from the drop

down menu and configure a new rule with the following parameters.

Event: Document Added

Filters: In Folder [your bulk user import folder] and Has Name Like [*.csv]

Actions: "Bulk Import Users" is the only action required. It is optional, but a best practice to add a "Move

Document" action following the "Bulk Import Users" action so that the CSV file is moved to an archive folder after

it has been processed. It can be moved to the Trash as well. When a Bulk Import Users Document Rule

executes, the document rule log will indicate how many users were Added, Updated and Deleted.

Figure 3. shows what a typical Bulk Import Users configuration might look like in the SpringCM User interface:

© 2013 SpringCMSM 13

Figure 3. Bulk User Import Document Rule Configuration

Since the CSV file is a standard format, it can be generated from any source user repository. Customers may opt

to generate the files manually as part of a one-time load, or may generate them as part of an automated nightly

process to keep the Address Book users and groups in sync with the enterprise repository.

The following two examples show how a CSV can be generated from Active Directory using Powershell and then

SFTP'd to SpringCM using Wincsp scripting. Powershell and Winscp are both free tools, see

http://technet.microsoft.com/en-us/scriptcenter/dd742419 and http://winscp.net/eng/docs/scripting for more

information on obtaining them.

http://technet.microsoft.com/en-us/scriptcenter/dd742419
http://winscp.net/eng/docs/scripting

© 2013 SpringCMSM 14

Note: The samples shown below will only work on a machine that has Powershell 2.0 and .NET Framework 3.5

or higher installed. These examples are only for illustration purposes only. If they are leveraged for a production

implementation, they must updated with filters and directory roots that correspond to the customer Active

Directory implementation. They may be used, edited, and distributed in any way the customer sees fit however

given that customers have different environments and configurations of their Active Directory, the scripts will not

be supported by SpringCM support. Customers may use them as a starting point and will likely need filters to

only extract a smaller subset of users and groups than what these samples will add to the CSV file.

Generate Bulk User Import CSV simple, all users in an Organizational Unit:

#This script will only work with Powershell 2.0 and .NET 3.5

#Import the account management assembly

Add-Type -AssemblyName "System.DirectoryServices.AccountManagement"

#Variable for the output file, whatever directories specified here must exist

$outputfile ="C:\temp\springusers.csv"

#Create the header, this will also create the file if it does not exist

"Email,FirstName,LastName,Groups,Active" | Out-File $outputfile

create the context i.e. connect to the domain

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Domain

$coptions = [System.DirectoryServices.AccountManagement.ContextOptions]::Negotiate

$context = New-Object -TypeNameSystem.DirectoryServices.AccountManagement.PrincipalContext

 -ArgumentList $ctype,"mydomain.com","ou=user,dc=mydomain,dc=com",$coptions

$userQueryFilter = New-Object

-TypeNameSystem.DirectoryServices.AccountManagement.UserPrincipal -ArgumentList $context

$searcher = New-Object System.DirectoryServices.AccountManagement.PrincipalSearcher

$searcher.QueryFilter = $userQueryFilter

© 2013 SpringCMSM 15

$users = $searcher.FindAll()

#Loop through the users

foreach ($user in $users)

{

 $outputGroups = New-Object System.Collections.ArrayList

 #This will get all of the groups and nested groups

 $groups = $user.GetAuthorizationGroups()

 foreach($group in $groups)

 {

 $outputGroups.Add($group.name)

 }

 #Format the output

 $delimitedGroups = [string]::join('|',$outputGroups)

 $line =

[string]::join(',',($user.emailaddress,$user.GivenName,$user.Surname,$delimitedGroups,"true"))

 $line | Out-File $outputfile -append

}

& winscp.exe /console /script=c:\scripts\sftptospring.txt

© 2013 SpringCMSM 16

Generate Bulk User Import CSV, users changed in the last day:

#This script will only work with Powershell 2.0 and .NET 3.5

#Import the account management assembly

Add-Type -AssemblyName "System.DirectoryServices.AccountManagement"

#Variable for the output file, whatever directories specified here must exist

$outputfile ="C:\temp\usersdaily.csv"

#Create the header, this will also create the file if it does not exist

"Email,FirstName,LastName,Groups,Active" | Out-File $outputfile

create the context i.e. connect to the domain

$ctype = [System.DirectoryServices.AccountManagement.ContextType]::Domain

$coptions = [System.DirectoryServices.AccountManagement.ContextOptions]::Negotiate

$context = New-Object -TypeNameSystem.DirectoryServices.AccountManagement.PrincipalContext -

ArgumentList $ctype,"mydomain.com","ou=users,dc=mydomain,dc=com",$coptions

#Here we create a filter for users who have changed in the last day

#Note that whenChanged is used instead of modifyTimeStamp because whenChanged is replicated

$editTime = (Get-Date).AddDays(-1).ToUniversalTime().ToString("yyyyMMddHHmmss") + ".0Z"

$filter = "(&(objectCategory=User)(whenChanged>=$editTime))"

#Create the connection and search root

$searchRoot = New-Object

System.DirectoryServices.DirectoryEntry("LDAP://ou=users,dc=mydomain,dc=com")

#These are the properties we want returned

$propertiesToLoad = "distinguishedname","name","givenname","sn","mail"

#Setup the the search and load matching users

$directorySearcher = New-Object System.DirectoryServices.DirectorySearcher -ArgumentList

$searchRoot,$filter,$propertiesToLoad,"OneLevel"

© 2013 SpringCMSM 17

$users = $directorySearcher.FindAll()

$userQueryFilter = New-Object -TypeNameSystem.DirectoryServices.AccountManagement.UserPrincipal

-ArgumentList $context

$searcher = New-Object System.DirectoryServices.AccountManagement.PrincipalSearcher

$searcher.QueryFilter = $userQueryFilter

foreach ($user in $users)

{

 #Convert from a directory entry object to user principal...makes it easier to get the groups

 $userPrincipal =

[System.DirectoryServices.AccountManagement.UserPrincipal]::FindByIdentity($context,$user.Proper

ties.distinguishedname)

 #Process groups

 $outputGroups = New-Object System.Collections.ArrayList

 $groups = $userPrincipal.GetAuthorizationGroups()

 foreach($group in $groups)

 {

 $outputGroups.Add($group.name)

 }

 $delimitedGroups = [string]::join('|',$outputGroups)

 #Print the output to a file

 $line =

[string]::join(',',($userPrincipal.emailaddress,$userPrincipal.GivenName,$userPrincipal.Surname,

$delimitedGroups,"true"))

 $line | Out-File $outputfile -append

}

& winscp.exe /console /script=c:\scripts\sftptospring.txt

© 2013 SpringCMSM 18

Winscp script sftptospring.txt:

Open myspringuser@mydomain.com:mypassword@sftp.springcm.com

cd "/My Path/Usersync"

option transfer ascii

put c:\users.csv

close

exit

© 2013 SpringCMSM 19

Web services

SpringCM exposes a SOAP based Web services API that provides a wide range of functionality that includes

folder and document management, workflow functions, and user management. This document assumes that the

reader has some familiarity with Web services and will only focus on the user and group management functions

exposed in the API. The examples in the section are shown in C# .NET, PHP, and Java (Axis client), however

SpringCM does not dictate any preferred client technology. Virtually any SOAP client can be used with the API,

and the demonstrated method calls will remain the same regardless of the SOAP client technology used.

SpringCM Web services are secure and before getting started with them, you will need to contact SpringCM

support via email (support@springcm.com or servicedesk.springcm.net) to generate an API key for your

account. For general information on getting started with SpringCM Web services and reference for the full API,

see the following URL:

http://www.springcm.com/faq/faqs-for-apis

Note: SpringCM versions the WSDL used to access the API as new functionality is added. At the time of this

writing, the current version is v12 however it maybe versioned at any major release.

Authentication

To start any session with Web services, the first call made will always be to one of the authenticate methods. The

authenticate methods will return you a token in the context of the user you authenticated with and will be used in

all subsequent API calls. The sample shown below is the recommended way to authenticate with a username,

password and account id. To create Users and Contacts, you must authenticate with a user that has the User

Administrator or Super Administrator role. To create Groups or manage group membership, you must

authenticate with a user that has the Super Administrator role. Best practices dictate creating a dedicated user

that is used only for connecting to the API. The section SpringCM API's and Single Sign On at the end of this

document outlines some alternate ways of connecting to the API.

Authentication .NET Sample:

SpringCMServiceSoapClient service = new SpringCMServiceSoapClient();
string token =
service.AuthenticateNonDefault(<username>,<password>,<accountId>,<apikey>);

mailto:support@springcm.com
mailto:servicedesk.springcm.net
http://www.springcm.com/faq/faqs-for-apis

© 2013 SpringCMSM 20

Authenticate Java Sample:

SpringCMServiceSoapProxy springCMService = new SpringCMServiceSoapProxy();

String token =

springCMService.authenticateNonDefault(<username>,<password>,<accountId>,<apikey>);

Authenticate PHP Sample:

$authResult = $springCM->AuthenticateNonDefault(array(
 'userName'=>'<your id>',
 'password'=>'<your password>',
 'AccountId'=>'<your account id>',
 'apiKey'=>'<your api key>'
));

// Get the inner object from the SOAP response
$token = $authResult->AuthenticateNonDefaultResult;

Once you have authenticated, you can start working with the API. The web service API is object oriented with the

following objects representing items in the Address Book:

 SCMUserAccount -- Represents a user in the SpringCM Address Book. Derives from SCMContactInfo

and SCMBaseObject.

 SCMContact -- Represents a contact in the SpringCM Address Book. Derives from SCMContactInfo and

SCMBaseObject.

 SCMGroup -- Represents a SpringCM security or distribution group. Derives from SCMBaseObject.

Create, Delete, Update, and Load Users and Groups

The creation, deletion, and update of contacts, users and groups in the SpringCM Address Book are all handled

similarly in the SpringCM API. The SpringCM service exposes the following methods that apply to all

SCMBaseObjects:

 Load -- Used to get an object based on its internal id

 Save -- Used to create or update an object in SpringCM

 Delete -- Used to delete an object in SpringCM

In addition to the above methods, the SpringCM API exposes methods specific to User and Contact management:

 UserGetByAccountId -- Gets all the users in a given account.

 ContactFind -- Used to find a Contact or User via search criteria. Searchable fields are First Name, Last

Name, Email Address, and Company

 UserSetPassword -- Changes the password for the user context used in the authenticate call

 ResetPassword -- Sends an email to a user that allows them to change their password

© 2013 SpringCMSM 21

Additionally, there are methods specific to Group management:

 GroupFind -- Used to find a Group via search criteria

 GroupGetByContact -- Used to get the groups that a User is assigned to

Sample Operations

Appendices A,B and C contain sample code that depict some common operations executed using the above

objects and methods. They are code snippets and assume that authentication has taken place and a token has

been generated. Appendix A contains C# .NET examples, Appendix B contains Java examples and Appendix

C has samples written in PHP.

Each appendix has a sample for the following operations that highlight programmatic management of the

SpringCM Address Book:

 Create User

 Delete User

 Find user and list group memberships

 Find or Create Group and Add Users

 Reset Password

© 2013 SpringCMSM 22

References:

Object Link

SCMUserAccount
https://www.springcm.com/atlas/webservices/v12/documentation/html/T_AD

EXS_WebServices_v12_Common_SCMUserAccount.htm

SCMContact
https://www.springcm.com/atlas/webservices/v12/documentation/html/T_AD

EXS_WebServices_v12_Common_SCMContact.htm

SCMGroup
https://www.springcm.com/atlas/webservices/v12/documentation/html/AllMe

mbers_T_ADEXS_WebServices_v12_Common_SCMGroup.htm

Method Link

AuthenticateNonDefault
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_Common_SCMBase_AuthenticateNonDefault.htm

Load
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_Load.htm

Save
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_Save.htm

Delete
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_Delete.htm

UserGetByAccountId
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_UserGetByAccountId.htm

ContactFind
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_ContactFind.htm

UserSetPassword
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_UserSetPassword.htm

ResetPassword
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_ResetPassword.htm

GroupFind
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_GroupFind.htm

GroupGetByContact
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_AD

EXS_WebServices_v12_SpringCMService_GroupGetByContact.htm

https://www.springcm.com/atlas/webservices/v12/documentation/html/T_ADEXS_WebServices_v12_Common_SCMUserAccount.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/T_ADEXS_WebServices_v12_Common_SCMUserAccount.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/T_ADEXS_WebServices_v12_Common_SCMContact.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/T_ADEXS_WebServices_v12_Common_SCMContact.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/AllMembers_T_ADEXS_WebServices_v12_Common_SCMGroup.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/AllMembers_T_ADEXS_WebServices_v12_Common_SCMGroup.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_Common_SCMBase_AuthenticateNonDefault.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_Common_SCMBase_AuthenticateNonDefault.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Load.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Load.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Save.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Save.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Delete.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_Delete.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_UserGetByAccountId.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_UserGetByAccountId.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_ContactFind.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_ContactFind.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_UserSetPassword.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_UserSetPassword.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_ResetPassword.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_ResetPassword.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_GroupFind.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_GroupFind.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_GroupGetByContact.htm
https://www.springcm.com/atlas/webservices/v12/documentation/html/M_ADEXS_WebServices_v12_SpringCMService_GroupGetByContact.htm

© 2013 SpringCMSM 23

Salesforce User Synchronization

SpringCM's native Salesforce integration provides the ability to synchronize users directly from Salesforce to the

SpringCM Address Book. This section assumes that you have already installed and configured SpringCM's

managed package for Salesforce in the account you want to synchronize, but if not, you can visit SpringCM's

listing on the App Exchange for more information about SpringCM's managed package and account configuration:

 http://appexchange.salesforce.com/listingDetail?listingId=a0N300000016coCEAQ

After your integration is complete, you can optionally configure automatic user synchronization. Configuration of

the SpringCM Cloud Connector for Salesforce to sync users from Salesforce to SpringCM is discussed in this

section and consists of the following steps:

1. Set Field-Level Security on SpringCM user components

2. Apply SpringCM user components to user page layout

3. Configure SpringCM user components

4. Map Salesforce user types to SpringCM security groups

5. Enable user sync

http://appexchange.salesforce.com/listingDetail?listingId=a0N300000016coCEAQ

© 2013 SpringCMSM 24

Step 1 – Set Field-Level Security on SpringCM user components

The following will describe the steps necessary to Set Field-Level Security on SpringCM user components

1. In Salesforce, navigate to Setup ->Customize -> Users -> Fields

2. Scroll down to User Custom Fields and find the SpringCM Role and SpringCM User fields

3. Click on the SpringCM Role/User field and press button to Set Field-Level Security

4. Set the Visible and Read-Only checkboxes for each Profile as appropriate to only allow certain users to see

and/or manage these fields on the User record

Best Practice: Before adding these fields to the page layout for Users, it is recommended to secure these fields

to only be editable by the Profiles, like System Administrator, who are responsible for managing users in your

Salesforce.com account. Securing these fields to only certain Profiles prevents users from changing their

SpringCM permissions by changing their SpringCM User flag or SpringCM Role in Salesforce.com.

© 2013 SpringCMSM 25

Step 2 – Apply SpringCM user components to user page layout

The following will describe the steps necessary to apply the SpringCM user components to the Salesforce user

layout

5. In Salesforce, navigate to Setup -> Manage Users -> Users

6. Choose any user to view

7. Click the blue Edit Layout link in the upper right

8. Drag the SpringCM User field down to additional information

9. Drag the SpringCM Role field down to additional information

10. Click Save

© 2013 SpringCMSM 26

Step 3 – Configure SpringCM settings for each user

This section will walk you through how to set the SpringCM User Flag and role for each user. During the user

sync process, this information will be passed to SpringCM to create, modify or delete the user record in

SpringCM.

1. In Salesforce, navigate to Setup -> Manage Users -> Users

2. Choose any user to view

3. Click the Edit button

4. Scroll down to the section titled Additional Information

5. Check the box labeled SpringCM User

6. Select the appropriate SpringCM Role from the drop down list

7. Click Save

Repeat the above for each user

© 2013 SpringCMSM 27

Step 4 – Mapping Salesforce users to SpringCM security groups

This section walks you through the process to map your Salesforce users to SpringCM security groups.

1. In SpringCM, navigate to Preferences -> Account Preferences -> Salesforce Configuration

2. Scroll down to the bottom of the page, to a section called Map Salesforce and SpringCM Security

3. Click the blue Add New Mapping Link

4. Choose the Salesforce Profile you would like to map from the dropdown list

Note: Salesforce Profile is the default setting, please contact SpringCM support if you would like to set up

mappings based on Salesforce Role

5. Select the appropriate SpringCM security groups from the list of available security groups. Use the Shift or

Control functions on your keyboard to select multiple.

6. Click the orange right arrow to move them to the selected side

7. Click Save

8. Repeat as necessary for each Profile that you want to set up a Mapping for

© 2013 SpringCMSM 28

Step 5 – Enable user sync

The last step is to now enable synchronization between SpringCM and Salesforce

Note: this step may have been completed during your configuration of the package during initial set up.

1. Scroll to the middle of the Salesforce Configuration Page in SpringCM

2. Find the section called Keep Users in sync with Salesforce

3. Click the Yes radio button

4. Click Save

© 2013 SpringCMSM 29

Single Sign-On (SSO)

Overview

When Single Sign On is enabled for a SpringCM account, user passwords do not have to be set in order for a

user to access SpringCM via a web browser. Authentication is delegated to a trusted outside source by calling

into infrastructure hosted by the customer or a cloud based identity provider. SSO provides a number of

advantages to both end users and administrators including allowing users to maintain a single password that is

used to access both their local intranet applications and SpringCM, as well as giving administrators the ability to

control access to SpringCM, reset passwords and enforce security polices from outside SpringCM.

SpringCM supports two types of Single Sign On. SpringCM is a SAML 2.0 Service Provider and supports both

Identity Provider Initiated (IdP-Initiated) SSO and Service Provider Initiated (SP-Initiated) SSO as described by

the SAML 2.0 standard. Additionally, SpringCM has developed a proprietary SSO for use with Salesforce.

Detailed description and configuration options for both types are described in this section.

Note: If you are part of multiple SpringCM accounts, you will only be able to SSO onto your default account which

needs to have SSO configured. After that, you will be able to switch to any account you have access to.

SAML 2.0 Federated Authentication

Customers that have implemented a SAML 2.0 compliant Identity Provider can use it to participate in federated

authentication SSO with SpringCM. When authenticating to SpringCM via IdP-Initiated SSO, users first navigate

to a portal page on their local intranet that authenticates the user and then passes a SAML response to SpringCM

to create their SpringCM security context. When authenticating via SP-Initiated SSO, users first come to

SpringCM directly requesting a secure resource via a URL. SpringCM will then POST-Redirect them to their

Identity Provider which prompts the user for authentication if they have not already authenticated. The Identity

provider then generates a SAML Response that is posted back to SpringCM. If the response is valid their

SpringCM security context is created and the user is redirected to the originally requested URL.

Figure 4 depicts the flow for SP-Initiated SSO. Note that IdP-Initiated SSO is a similar process, however steps 1-

3 do not take place. The process starts with the user authenticating to the Identity Provider (Step 4), and then

choosing to be redirected and logged into SpringCM (Steps 5-7). In order to enable SAML SSO for a SpringCM

account, follow the instructions in the following two sections, Configuring SpringCM for an Identity Provider

and Configuring an Identity Provider for SpringCM.

© 2013 SpringCMSM 30

Figure 4. SAML 2.0 Authentication Flow

Configuring SpringCM for an Identity Provider

As part of setting up SAML 2.0 Federated SSO, a onetime configuration must be done by a Super Administrator

in the SpringCM account preferences. To navigate to the SAML configuration options, click on Preferences and

then choose the SAML SSO sub tab. You should see something similar to Figure 5. In the Identity Provider

Configuration section there are four items to configure:

 Select Issuing Certificate -- This is the public key certificate file used to verify authentication responses

from the Identity Provider. Best practices dictates that a dedicated folder be created in the SpringCM

Documents tree to store the certificate and then secured only to Super Administrators. The certificate

should be uploaded to this folder and then chosen in this screen. Only documents with a ".cer" or ".cert"

can be selected

Issuer -- This is the unique identifier of the Identity Provider

Service Provider (SP) Initiated Endpoint -- This is the Identity Provider URL that SpringCM will Post-Redirect

the client to during when SP-Initiated SSO is invoked. At runtime, a SAML Authentication Request is sent asking

the Identity Provider to authenticate the user and send a SAML Response.

SAML Enabled -- Determines if SAML SSO is active in the account or not.

© 2013 SpringCMSM 31

Figure 5. SAML SSO Preferences

Configuring an Identity Provider for SpringCM

The SpringCM Service Provider Information section is informational only to help you configure your Identity

Provider for use with SpringCM. As outlined in the samples below, the configuration URLs are different

depending on what SpringCM environment you are configuring SSO for which can either be UAT or Production.

If your Identity Provider supports auto configuration by importing Service Provider metadata, you can use the

Download Metadata link to download the metadata xml and import it into your Identity Provider. Some Identity

Provider's, such as ADFS, support auto configuration via URL and can be configured to monitor the URL

periodically for changes and auto update your configuration. SpringCM supports this as well and provides a

hosted version of the metadata:

UAT- https://uat.springcm.com/atlas/sso/SPMetadata.ashx

Production - https://www.springcm.com/atlas/sso/SPMetadata.ashx

https://uat.springcm.com/atlas/sso/SPMetadata.ashx
https://www.springcm.com/atlas/sso/SPMetadata.ashx

© 2013 SpringCMSM 32

Not all Identity Providers support direct consumption of metadata to configure the outgoing assertions to

SpringCM and need to be configured manually. The following are the key items needed for Identity Provider

configuration.

Entity Id

This is the unique identifier of the SpringCM Service Provider:

UAT - https://uat.springcm.com/atlas/sso/

Production - https://www.springcm.com/atlas/sso/Prod

Assertion Consumer Service URL

This is the URL where the Identity Provider POSTs the SSO Assertion to SpringCM:

UAT - https://uat.springcm.com/atlas/SSO/SSOEndpoint.ashx

Production - https://www.springcm.com/atlas/SSO/SSOEndpoint.ashx

Name Id Format

This indicates what name identifier format SpringCM supports. The only supported format currently is email

address: urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress

The email address in the SAML Assertion response should be the same email address that exists in the

SpringCM Address Book.

Signing

SpringCM expects that all SAML Assertions posted to the Assertion Consumer Service will be signed and will sign

all authentication requests to the Identity Provider. The XML returned from accessing the federated metadata

URL will contain the public key certificate used for verifying authentication requests from SpringCM, so if you are

using the metadata you should not need to download the certificate. If you are manually configuring your Identity

Provider, use the Download Certificate link to download the public key certificate used to verify SAML Requests

from SpringCM.

Note that this certificate will expire every few years. If you have SAML enabled in your account, SpringCM will

notify the Super Administrators in the account in advance of certificate expiration and any action that needs to be

taken.

© 2013 SpringCMSM 33

Invoking SP-Initiated SSO

SpringCM will invoke SP-Initiated SSO when they following three conditions are met:

1. A request is made for a non-public, secured resource

2. The user does not have a current session

3. SpringCM can determine the user's account id via the aid parameter on the query string so that the

configured Identity Provider to redirect to can be determined.

Because of the requirement that the account id be present on the query string to invoke SP-Initiated SSO, almost

all system generated URL's from SpringCM will contain this parameter. This includes not only normal browsing

URLs, but also links that are generated by sending documents via email in the UI or workflow.

Since SP-Initiated SSO is only invoked when a request for secure resource is made, there is currently no way for

a user to invoke SP-Initiated SSO on demand from the login page. Because of this, it is common practice for

customers to create a friendly URL that will invoke either Identity Provider initiated SSO or SP-Initiated SSO to

SpringCM. This creates a better experience for end users, as they will follow a simple URL and invoke SSO onto

SpringCM. If you do not know your Identity Provider's URL to invoke a SAML response to SpringCM, you can

link to the SpringCM ACS URL. For example, a customer may create something like

springcm.mycompany.com and link it to https://www.springcm.com/atlas/SSO/SSOEndpoint.ashx?aid=XXXX,

where 'XXXX' is replaced with the SpringCM account id.

© 2013 SpringCMSM 34

Sample Identity Provider Configurations

SpringCM will work with any SAML 2.0 compliant Identity Provider. This section outlines configurations for

common on premise and cloud based Identity Providers and how to configure them for SpringCM.

Active Directory Federation Services (ADFS)

There are a number of steps in setting up ADFS and the ADFS proxy and configuring them for your environment.

The scope of this section of the document only covers setting up SpringCM as a Relying Party Trust and assumes

that your ADFS infrastructure is already in place and configured.

ADFS uses slightly different terminology than SAML 2.0 as depicted in the following table:

ADFS Name SAML 2.0 Name

Security Token Assertion

Claims Provider Identity Provider

Relying Party Service Provider

Claims Assertion Attributes

To configure ADFS for SpringCM SAML SSO, execute the following steps:

Step 1: Install and Certificates

Install ADFS and select the certificate with which your tokens will be signed. The public key of the Token Signing

certificate is the one you will upload to SpringCM.

© 2013 SpringCMSM 35

Step 2: Configure a Relying Party Trust within ADFS

In this scenario the Relying Party is SpringCM. Open the ADFS Configuration Manager and choose Trust

Relationships. Right Click on Relying Party Trusts and click on Add New.

© 2013 SpringCMSM 36

Step 3: Configure the Data Source

On the Select Data Source screen, enter the SpringCM federation metadata address :

 UAT - https://uat.springcm.com/atlas/sso/SPMetadata.ashx

 Production - https://www.springcm.com/atlas/sso/SPMetadata.ashx

Click through the rest of the screens unless you choose to add some description notes.

© 2013 SpringCMSM 37

Step 4: Update Security Properties

After the trust is setup, it is necessary to modify its properties. Right click on the trust and choose Properties.

Navigate to the Advanced tab and change the Secure hash algorithm to SHA-1. ADFS will use SHA-256 by

default, however SpringCM integration will only work with SHA-1.

© 2013 SpringCMSM 38

Step 5: Edit Claim rules

Right click on the trust and choose Edit Claim Rules.

© 2013 SpringCMSM 39

On the Issuance Transform Rules tab click Add Rule and then choose Send LDAP Attributes as Claims.

© 2013 SpringCMSM 40

Give it a name and select the attribute store which is usually Active Directory. For the mapping, under LDAP

Attribute, choose E-mail addresses and under Outgoing ClaimType choose Name ID. Click Finish.

© 2013 SpringCMSM 41

Step 6: Edit Authorization Rules

Do the same thing on the Issuance Authorization Rules tab that was done on the Issuance Transform Rules tab.

You may also need to add a security rule to allow your users to use the SpringCM relying party.

© 2013 SpringCMSM 42

Step 7: Test

At this point ADFS configuration is complete. Follow the SpringCM configuration instructions in the previous

section to upload your certificate and configure the Issuer and Service Provider (SP) Initiated Endpoint in

SpringCM preferences. Commonly they are in the following format when using ADFS:

Issuer - http://<your domain>/adfs/services/trust

SP Initiated Endpoint -- https://<your domain>/adfs/ls/

You are now ready to test your configuration. IdP SSO to SpringCM can be invoked by the using the following the

url: https://<your domain>/adfs/ls/IdpInitiatedSignOn.aspx, authenticating, and the choosing to be logged on to

SpringCM.

Salesforce Identity Provider

Salesforce can be configured as a SAML Identity Provider, allowing users to then authenticate to SpringCM and

other SAML Service Providers with their Salesforce credentials. There are some significant differences between

using Salesforce as a SAML Identity Provider and SpringCM's proprietary Salesforce SSO. The Salesforce SSO

section later in this document will compare and contrast the major differences between these. Configuring

Salesforce and SpringCM for SAML SSO is done in 4 steps:

1. Configure Salesforce as an Identity Provider (if your Org has not set this up already)

2. Configure SpringCM as a Service Provider in Salesforce

3. Configure your SpringCM account for your Salesforce Identity Provider

4. Configure your Salesforce users with Federation Ids

Prerequisite: Configuring Salesforce as an Identity Provider

Before you can setup SpringCM as a Service provider, you must first enable your Salesforce Org as an Identity

Provider, setup your domain, and provision your certificates as described in Salesforce's online documentation:

 https://help.salesforce.com/htviewhelpdoc?err=1&id=identity_provider_about.htm&siteLang=en_US

Once you have completed the Salesforce Identity Provider setup, you can add SpringCM as a Service Provider.

Configure SpringCM as a Service Provider in Salesforce

To setup SpringCM as a Service Provider, log into Salesforce as an administrator and navigate to

Administration Setup>Security Controls>Identity Provider. Under the Service Providers section click New.

https://help.salesforce.com/htviewhelpdoc?err=1&id=identity_provider_about.htm&siteLang=en_US

© 2013 SpringCMSM 43

In another window, log into the SpringCM account you are configuring for SSO and navigate to Preferences and

then SAML SSO. The SpringCM Service Provider Information section contains all of the information you will

need to configure Salesforce. Note the screenshot below is for Production, the settings will be different if you are

in the SpringCM UAT environment.

In the Salesforce screen, the Name can be anything you want such as simply "SpringCM". Copy the Entity Id

and ACS URL from the SpringCM configuration screen to the Salesforce screen. The Subject Type needs to be

a field that contains the user's email address that is their user id in SpringCM. If the Username or User ID field is

not the user's email address, then choose Federation ID and see the section Configure your Salesforce users

with Federation Ids later in the document. Click the Download Certificate from SpringCM, save it on your local

machine, and then upload it as the Service Provider Certificate in the Salesforce configuration screen. Click

Save in the Salesforce screen.

© 2013 SpringCMSM 44

Configure your SpringCM account for your Salesforce Identity Provider

To configure your SpringCM account for Salesforce, you will now copy information from Salesforce to the

SpringCM configuration screen. Back in the SpringCM account you are configuring for SSO and navigate to

Preferences and then SAML SSO. There are four fields in the Identity Provider Configuration that need be

filled out.

Set SAML Enabled to "Enable". Log into Salesforce as an administrator and navigate to Administration

Setup>Security Controls>Identity Provider. You may optionally want to set Profiles that have access to the

SpringCM Service Provider and then click on the SpringCM Service Provider itself.

Copy the Entity Id from Salesforce to the SpringCM Entity Id field and copy the SP-Initiated POST Endpoint

from Salesforce to Service Provider (SP) Initiated Endpoint field in SpringCM. To configure the certificate on

© 2013 SpringCMSM 45

the SpringCM side, navigate back to the Identity Provider Setup screen in Salesforce and click on Download

Certificate. Upload this file to a folder in SpringCM that only Super Admins have access to and then select it in

the Identity Provider Configuration section in SpringCM.

Configure your Salesforce users with Federation Ids

SpringCM uses a user's email address as their login id. At the time of this writing, Salesforce cannot be

configured to use a user's email address as the login id as part of a SAML Response. If by convention, your

Salesforce usernames are also the email address used to log into SpringCM, then you can configure your

SpringCM service provider configuration to pass the username, and you are done. If not, then you must use the

Federation ID. This is a free form property on a user that must be populated with the user's email address that

they use to log into SpringCM. This can be done manually for each of your user's in Salesforce, however it may

become tedious to always have to keep them in sync manually. Fortunately, Salesforce triggers can be used to

automatically copy a user's email address to their Federation ID every time a new user is created or their email

address changed as shown in the following sample Apex code. Full discussion of creating Salesforce triggers is

outside the scope of this document, consult Salesforce's online help and tutorials for more information.

Sync Email to Federation ID Apex:

trigger CopyEmailToFederationId on User (before insert,before update) {
 for (User newUser: Trigger.new) {
 User oldUser = null;
 if(Trigger.oldMap!=null)
 {
 oldUser = Trigger.oldMap.get(newUser.Id);
 }

 if (oldUser==null || oldUser.Email!= newUser.Email) {
 newUser.FederationIdentifier = newUser.Email;
 }
 }
}

© 2013 SpringCMSM 46

OneLogin

OneLogin is a cloud based identity provider and a SpringCM partner. They offer a free licensing option for

SpringCM customers. More information can be found at the following links:

http://www.onelogin.com/partners/app-partners/springcm/

https://onelogin.zendesk.com/entries/21568718-configuring-saml-for-springcm

Ping Identity

Ping Identity is a cloud based identity provider and a SpringCM partner. More information can be found at the

following link or ask your SpringCM representative for a referral: https://www.pingidentity.com/

http://www.onelogin.com/partners/app-partners/springcm/
https://onelogin.zendesk.com/entries/21568718-configuring-saml-for-springcm
https://www.pingidentity.com/

© 2013 SpringCMSM 47

SpringCM Proprietary Salesforce SSO

Salesforce SSO from the UI

If your SpringCM account is configured for Salesforce integration, you can leverage SpringCM's propriety

Salesforce Single Sign On for your own purposes. Configuring Salesforce integration is outside the scope of this

document, however you can visit SpringCM's listing on the App Exchange for more information about SpringCM's

managed package and account configuration:

 http://appexchange.salesforce.com/listingDetail?listingId=a0N300000016coCEAQ

Once your account is configured for Salesforce, the managed package will take care of logging you into

SpringCM in a seamless manner whenever you visit a visual force page configured with a SpringCM Cloud

Connector Salesforce widget. If you plan on doing a more customized integration, you can invoke Salesforce SSO

in an ad hoc manner by appending 2 extra query string parameters to any SpringCM URL. The 2 parameters are:

sfsid - This should be the Salesforce session id for the user. This user's email address must exist in the

SpringCM address book in the SpringCM account configured for the current Salesforce Org. In Apex it can be

obtained by calling System.Userinfo.getSessionId() or from a Visual Force Page

sfapiurl - The API URL for the Salesforce Org. It can be obtained in a Visual Force Page.

If the SpringCM resource you link to is a secured resource, the browser does not have a SpringCM session, and

the sfsid and sfapiurl are passed on the query string, SpringCM will take the data from the URL and try to SSO

the user on to SpringCM. Note that this method is slightly different than SAML SSO in that the session you get is

"locked down". The user will not be able to switch to other accounts they have access to, they are only allowed to

work with documents in the SpringCM account that is configured for the Salesforce Org that they SSO'd from.

http://appexchange.salesforce.com/listingDetail?listingId=a0N300000016coCEAQ

© 2013 SpringCMSM 48

Salesforce SSO vs. Salesforce as a SAML Identity Provider

When building a customized solution leveraging both SpringCM and Salesforce, you may feel you that you need

to choose between leveraging SpringCM's proprietary Salesforce SSO and using Salesforce as an Identity

Provider. When making that decision, there are a number of key points to consider:

 Salesforce SSO is inherently enabled in any SpringCM account using the SpringCM managed package

for Salesforce. No further configuration is required.

 Using Salesforce as a SAML Identity Provider is not specific to SpringCM. If it is setup, it can be used by

other cloud based Service Providers that support SAML.

 The 2 authentication mechanisms are not mutually exclusive, they can be used together. This may be

desirable given that there are number of differences, which are outlined in the matrix below.

The following matrix compares and contrast functionality of the two forms of SSO:

 Salesforce SSO Salesforce SAML IdP

Supports login initiated from Salesforce X X

Supports login initiated from SpringCM X

Supports multiple SpringCM accounts per SF Org X

Can authenticate to the SOAP API X

Can authenticate to the REST API X

Can use SpringCM user keys X

Can switch SpringCM accounts after authentication X

User must exist in the SpringCM address book X X

© 2013 SpringCMSM 49

SpringCM API's and Single Sign On

SpringCM has both a SOAP and REST based API. Both API's must be authenticated to, and all subsequent calls

are made in the context of the user that authenticated to the API. An API user can be used, but often times it is

desirable to connect to the API in the context of a logged in user. Most users configured for SSO do not have

passwords, and even if they did, it is not desirable to have to prompt and/or store a password for an end user to

connect to the API with. Instead, SpringCM offers 3 options to securely connect to the API in the context of an

end user:

 Salesforce SSO - The Salesforce SSO mechanism described in the previous section can be used with

both the REST and SOAP API's. As with the URL query string method, the user's Salesforce session id

and API URL are used to authenticate to the SpringCM API.

 OAuth 2.0 - SpringCM supports OAuth 2.0. With OAuth 2.0, end user's are prompted to authorize a 3rd

party application to connect to the API as that user. The OAuth authorization screen is a secure

SpringCM resource and can be authenticated to with either password or SAML 2.0. An OAuth

authorization token must always be validated against the REST API and which point a REST access

token is received. The rest access token can subsequently be exchanged for a token that can be used

with the SOAP API.

 SpringCM User Keys - SpringCM custom menu buttons can be configured to pass a user key to an

external URL. The user key can then be used to authenticate to the SOAP API. User keys cannot be

used with the REST API at this time. SpringCM user keys are a proprietary solution for enabling a third

party application to authenticate to the SOAP API in the context of the logged in user.

Note that calling a configured SAML Identity Provider to participate in API authentication is not supported, as it is

primarily a browser based protocol. However SAML can still can be leveraged indirectly as it can be used to

authenticate the user to the SpringCM UI and then generate an OAuth token or user key to connect to the API in

the context of that user. Configuration of all 3 API authentication methods are discussed in the following sections.

Salesforce SSO API Authentication

To authenticate to the SOAP API using Salesforce SSO, call the AuthenticateSSO method. This method takes

five parameters:

 userName - This is the SpringCM username, the user's email address

 ssoToken - This is the Salesforce session id. In Apex it can be retrieved with UserInfo.getSessionId()

 ssoUrl - This is the Salesforce Org's API URL, it can be retrieved in a Visual Force page

 apiKey - The SpringCM API Key

 accountId - The SpringCM Account Id

© 2013 SpringCMSM 50

After authenticating successfully, a token will be returned in the context of the user that can be used for

subsequent API calls.

To authenticate via the REST API, only the Salesforce session id and API URL are needed. The following Apex

example shows how to properly pass this information in the Authorization header in a SpringCM REST call. This

particular sample returns information about the SpringCM account configured for the current Org. Note that UAT

and Production URL's are shown, however you will only use one or the other.

Retrieve Account Information Apex Sample:

string apiURL = <your api url urlencoded>;
string oAuthUrlUAT = 'https://oauthuat.springcm.com/rest/201211/Salesforce/account/';
string oAuthUrlProd = 'https://oauth.springcm.com/rest/201211/Salesforce/account/';

HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setHeader('Accept', '*/*');
string url = oAuthUrlUAT + System.Userinfo.getOrganizationId();
req.setHeader('Authorization', 'Salesforce ' + System.Userinfo.getSessionId() + '|' +
apiURL);
req.setEndpoint(url);

Http http = new Http();
HttpResponse response = http.send(req);
Dom.XMLNode accountInfo = response.getBodyDocument().getRootElement();
string accountId = accountInfo.getAttribute('Id','');

OAuth 2.0

A full discussion of OAuth is outside the scope of this document. SpringCM supports OAuth 2.0 and OAuth

tokens can be used to connect to the REST API. After a REST token is obtained, it may be used to authenticate

to the SOAP API with the SOAP API call GetSoapAuthenticationTokenFromRestToken.

SpringCM User Keys

SpringCM allows custom buttons to be added to the SpringCM UI's menu drop downs and toolbar. To customize

the menu, log in as an administrator and then navigate to View and then Customize Menu. Next click New Menu

Item and you should see a screen similar to Figure 6. Make sure to check the box labeled Add User Key to URL

for SpringCM to generate a user key in the context of the logged in user and pass it on the query string. Checking

the Add Selection to URL box will pass the documents or folder selected on the query string as well, as it may be

needed by your third party application. After saving the configuration on this screen you may optionally choose

View and then Customize Toolbar if you want your custom button to show up on the toolbar as well as the menu

drop down.

© 2013 SpringCMSM 51

When the button is clicked you will notice that a parameter named userkey is passed on the query string, which is

a token as well as a second parameter called uEmail that is the current user's email address. These two

parameters can be used to authenticate to the SOAP API in the context of the logged user by calling the

AuthenticateWithKeys method which takes the following parameters:

 userName -- This is the SpringCM username, which is the user's email address. The value of the uEmail

query string parameter is passed as this parameter.

 userKey -- The user key from the query string.

 apiKey -- Your SpringCM API Key

The method will return a token in the context of the logged in user than can be used for subsequent API calls.

Figure 6. Configuring a custom button with a user key

© 2013 SpringCMSM 52

The following code sample shows how to retrieve a the userkey and uEmail parameters passed from a

SpringCM custom button and use them to authenticate to the API.

AuthenticateWithKeys PHP Sample:

<?php

// A SpringCM custom button puts the selected items on the query
// string in the format Selection=Document,<document id>;
// The document's ID will be needed later so we remove the labeling here
$document = str_replace('Document,', '', $_GET['Selection']);
$document = rtrim($document, ';');

// Adding the User Key to the query string puts two parameters in the URL: the user's
// email and a generated user key
$user_id = $_GET['uEmail'];
$user_key = $_GET['userkey'];

// Get a SpringCM session using AuthenticateWithKeys
$springcm = new
SoapClient("https://uat.springcm.com/atlas/webservices/v12/SpringCMService.asmx?wsdl");
$auth_result = $springcm->AuthenticateWithKeys(array (
 'userName'=>$user_id,
 'userKey'=>$user_key,
 'apiKey'=>'<your api key>'));

// The AuthenticateWithKeysResult is a wrapper around the token
$token = $auth_result->AuthenticateWithKeysResult;
?>

© 2013 SpringCMSM 53

Mixing SSO and Password Login

Activating SSO for an account does not replace the ability for customers to also leverage the SpringCM login

page. It is possible to setup an account so users can both use a username/password and SSO.

If SSO is configured for an account, the following are some scenarios why password authentication may want to

be enabled as well:

 Users need to use non-SSO enabled access methods to SpringCM. Access methods that require

username and password include Webdav, FTP, and SFTP.

 Code written against the SpringCM API may need to connect in an administrative context instead of in the

context of a logged in user.

 Users that have administrative access to SpringCM may not always want to be logged in as an

Administrator. In this case, a second user may be created to be used strictly for logging in for

administrative purposes.

 Customers may want to grant access to their SpringCM account to users such as guests, temporary

contractors, and partners that they don't want to add to their enterprise user repository used by the SAML

Identity Provider.

For these cases, SpringCM allows you to choose how you want your account to behave when using SAML SSO

(these settings are not used by Salesforce SSO). Start by choosing a default: either all users are allowed to

create passwords in addition to SSO or all users are not allowed to use passwords by default. To set the account

default navigate to Preferences then Security. Under the Passwords header choose the default under the

option Allow Password Login for SSO Users as shown in Figure 7. After the default is set, you may selectively

override the default for a user by clicking on that user in the Address Book and changing the value set for the

Allow Password Login option as shown in Figure 8.

© 2013 SpringCMSM 54

Figure 7. Set the Password Defaults

Figure 8. Set the user to the Default or a specific setting

© 2013 SpringCMSM 55

SAML SSO for SpringCM Mobile, Edit, Scan and Sync

SAML SSO is currently supported in the SpringCM iPhone and Android mobile clients (assuming your Identity

Provider is Internet accessible), SpringCM Edit, SpringCM Scan, and SpringCM Sync. When configuring any of

these clients for SSO, users will be prompted for a onetime setup. They will have to configure their client with the

SpringCM account id of their default account and then authorize the client via SSO. Administrators should be

able to easily find their account id either in the query string when logged in or from the help text when configuring

SAML SSO in preferences. Figure 9 shows the sample setup for SSO for SpringCM Sync. The other SpringCM

clients will have similar setup screens.

Figure 9. Configuring SpringCM Sync for SAML SSO

© 2013 SpringCMSM 56

Appendix A: C# .NET User Management Sample Code

One of the most common business functions is the need to create or update a user. The following code shows

how a user can be programmatically created in the Address Book.

Create User C# .NET Sample:

SCMUserAccount scmUserAccount = new SCMUserAccount();

scmUserAccount.Email = "jdoe@springcm.com";

scmUserAccount.Role = SCMRole.FullSubscriber;

scmUserAccount.Status = SCMUserStatus.Active;

scmUserAccount.ObjectType = SCMObjectType.User;

scmUserAccount.FirstName = "John";

scmUserAccount.LastName = "Doe";

scmUserAccount.Country = "UNITED STATES";

scmUserAccount.ProvinceState = "ILLINOIS";

scmUserAccount.PostalCode = "60654";

scmUserAccount.Address1 = "350 North Orleans Street, Suite 950";

scmUserAccount.City = "Chicago";

//ManagedBy can be set, but you must find the Id to set it, see examples with ContactFind

//Persona can be set, but you must find the ID to set it, see examples with GroupFind

SaveResult saveResult = springCMService.Save(token, new[] { scmUserAccount }, true);

if (!saveResult.Success)

{

 foreach (Error e in saveResult.Errors)

 {

 Console.WriteLine(e.Message);

 //Handle error

 }

}

Console.WriteLine("User created with id: " + saveResult.SavedObjects[0].Id);

This example shows how to find a user and delete them from address book.

Delete User .NET Sample:

SCMContactInfo[] users = springCMService.ContactFind(token, "jdoe@springcm.com", false);

if(users.Count()==1)
{
 Console.WriteLine("User First Name: {0}", users[0].FirstName);
 Console.WriteLine("User Last Name: {0}", users[0].LastName);
 Console.WriteLine("Deleting user...{0}",users[0].Id);

 springCMService.Delete(token, SCMObjectType.User, users[0].Id);
}

© 2013 SpringCMSM 57

Another common scenario is to search for a user and retrieve some information about them. This example

searches for a user and if the user is found, displays the user's group memberships.

Note: Even though the method names are ContactFind and GroupGetByContact, they will work with both

SCMContact and SCMUserAccount objects.

Find user and list group memberships .NET Sample:

SCMContactInfo[] users = springCMService.ContactFind(token, "jdoe@springcm.com", false);

if (users.Count() == 1)

{

 Console.WriteLine("User First Name: {0}", users[0].FirstName);

 Console.WriteLine("User Last Name: {0}", users[0].LastName);

 SCMGroup[] groups = service.GroupGetByContact(token, users[0]);

 Console.WriteLine("Group Memberships:");

 for (int i = 0; i < groups.Length; i++)

 {

 Console.WriteLine(groups[i].Name);

 }

}

This next example shows how to work with groups. It will check if a group exists. If not it will create it and then

adds a user to it.

© 2013 SpringCMSM 58

Find or Create Group and Add Users .NET Sample:

var groupResult = _springcm.GroupFind(token,GROUP_NAME, false);
SCMGroup group;
bool userInGroup = false;

if (groupResult.Length > 0)
{
 group = groupResult[0];
 if (group.Members.Length > 0)
 {
 foreach(SCMContactInfo member in group.Members)
 {
 if (member.Email == USER_ID)
 {
 userInGroup = true;
 break;
 }
 }
 }
}
else
{
 group = new SCMGroup
 {
 GroupType = SCMGroupType.Security,
 IsPrivate = false,
 Name = GROUP_NAME,
 ObjectType = SCMObjectType.Group
 };
}

if (!userInGroup)
{
 var scmUser = _springcm.ContactFind(token, USER_ID, false)[0];

 var membersList = new List<SCMContactInfo>(group.Members) {scmUser};
 group.Members = membersList.ToArray();

 _springcm.Save(token, new SCMBaseObject[]{group}, true);
}

The ResetPassword method can be used to send password reset or activation emails.

Reset Password .NET Sample:

SCMContactInfo[] users = springCMService.ContactFind(token, "jdoe@springcm.com", false);

if (users.Length > 0 && users[0] is SCMUserAccount)
{
 springCMService.ResetPassword(token, (SCMUserAccount)users[0]);
}

© 2013 SpringCMSM 59

Appendix B: Java User Management Sample Code

One of the most common business functions is the need to create or update a user. The following code shows

how a user can be programmatically created in the Address Book.

Create User Java Sample:

SCMUserAccountscmUserAccount = new SCMUserAccount();

scmUserAccount.setEmail("jdoe@springcm.com");

scmUserAccount.setRole(SCMRole.FullSubscriber);

scmUserAccount.setStatus(SCMUserStatus.Active);

scmUserAccount.setFirstName("John");

scmUserAccount.setLastName("Doe");

scmUserAccount.setCountry("UNITED STATES");

scmUserAccount.setProvinceState("ILLINOIS");

scmUserAccount.setPostalCode("60654");

scmUserAccount.setAddress1("350 North Orleans Street, Suite 950");

scmUserAccount.setCity("Chicago");

//ManagedBy can be set, but you must find the Id to set it, see examples with ContactFind

//Persona can be set, but you must find the ID to set it, see examples with GroupFind

SaveResultsaveResult = springCMService.Save(token, new SCMBaseObject[]{ scmUserAccount },

true);

if (!saveResult.isSuccess())

{

 Error[] errors = saveResult.getErrors();

 for (int i = 0; i<errors.length; i++)

 {

 System.out.println(errors[i].getMessage());

 }

}

System.out.println("User created with id: " + saveResult.getSavedObjects()[0].getId());

This example shows how to find a user and delete them from address book.

Delete User Java Sample:

SCMContactInfo[] users = springCMService.contactFind(token, "jdoe@springcm.com", false);

if (users.length == 1)
{
 System.out.println("User First Name: " + users[0].getFirstName());
 System.out.println("User Last Name: " + users[0].getLastName());
 System.out.println("Deleting user...." + users[0].getId());

 springCMService.delete(token, SCMObjectType.User, users[0].getId());
}

© 2013 SpringCMSM 60

Another common scenario is to search for a user and retrieve some information about them. This example

searches for a user and if the user is found, displays the user's group memberships.

Note: Even though the method names are ContactFind and GroupGetByContact, they will work with both

SCMContact and SCMUserAccount objects.

Find user and list group memberships Java Sample:

SCMContactInfo[] users = springCMService.contactFind(token, "jdoe@springcm.com", false);

if (users.length == 1)

{

 System.out.println("User First Name: " + users[0].getFirstName());

 System.out.println("User Last Name: " + users[0].getLastName());

 SCMGroup[] groups = springCMService.groupGetByContact(token, users[0]);

 System.out.println("Group Memberships:");

 for (inti = 0; i<groups.length; i++)

 {

 System.out.println(groups[i].getName());

 }

}

This next example shows how to work with groups. It will check if a group exists. If not it will create it and then

adds a user to it.

© 2013 SpringCMSM 61

Find or Create Group and Add Users Java Sample:

public static void FindGroupAndAddMembers(SpringCMServiceSoapProxy springService,String
token)throws RemoteException{
{
 SCMContactInfo[] users = springService.contactFind(token, USER_ID, false);

 //Search for the groups
 SCMGroup[] groups = springService.groupFind(token, GROUP_NAME, false);

 if(users.length>0)
 {
 //Loop through the groups
 for (int i = 0; i < groups.length; i++)
 {
 //Print the group name
 SCMGroup group = groups[i];
 System.out.println(group.getName());

 List<SCMContactInfo> memberList =
 new ArrayList<SCMContactInfo>(Arrays.asList(group.getMembers()));
 memberList.add(users[0]);
 group.setMembers(memberList.toArray(new
SCMContactInfo[memberList.size()]));

 //Save the new group and check for errors
 SaveResult saveResult = springService.save(token, new SCMGroup[] { group
}, true);

 if (!saveResult.isSuccess())
 {
 Error[] errors = saveResult.getErrors();
 for (int e = 0; e < errors.length; e++)
 {
 System.out.println(errors[e].getMessage());
 }
 }

 }
 }
}}

The ResetPassword method can be used to send password reset or activation emails.

Reset Password Java Sample:

SCMContactInfo[] users = springService.contactFind(token,

"jdoe@springcm.com", false);

if (users.length == 1 && users[0] instanceof SCMUserAccount)

{

 springService.resetPassword(token, (SCMUserAccount)users[0]);

}

© 2013 SpringCMSM 62

Appendix C: PHP User Management Sample Code

One of the most common business functions is the need to create or update a user. The following code shows

how a user can be programmatically created in the Address Book.

Create User PHP Sample:

<?php

// User creation uses the Save method, which allows for creation or alteration of any
// object within SpringCM.
// Since this method takes a SCMBaseObject array, expecting that the actual objects
// passed will inherit SCMBaseObject,
// we have to define PHP classes for the base and derived objects and map them to types
// defined in the WSDL.

// create the mapping
$classMap = array('SCMBaseObject'=> 'BaseObject', 'SCMUserAccount'=>'UserAccount');

// pass the class mapping into the SoapClient
$springCM = new
SoapClient('https://uat.springcm.com/atlas/webservices/v12/SpringCMService.asmx?WSDL',
 array('classmap'=>$classMap));

$authResult = $springCM->AuthenticateNonDefault(array('userName' => '<your username>',
 'password' => '<your password>',
 'AccountId' => '<your account id>',
 'apiKey' => '<your api key>'));

$token = $authResult->AuthenticateNonDefaultResult;

// Create the base class...
class BaseObject
{
 public $Id;
 public $Name;
 public $ObjectType;
}

// ...and the derived class.
class UserAccount extends BaseObject
{
 public $FirstName;
 public $LastName;
 public $Email;
 public $Role;
 public $Status;
}

// Populate the object to be saved, which is of the derived type
$scmUserAccount = new UserAccount();
$scmUserAccount->FirstName = 'Test';
$scmUserAccount->LastName = 'ScmUser';

© 2013 SpringCMSM 63

$scmUserAccount->Email = 'test.scmuser@example.com';
$scmUserAccount->Role = 'FullSubscriber';
// Status must be provided, but can only be set as inactive via the API.
$scmUserAccount->Status = 'Inactive';
$scmSaveResult = $springCM->Save(array('token' => $token,
 'ToSave' => array($scmUserAccount),
 'CreateIfNew' => true));
?>

This example shows how to find a user and delete them from address book.

Delete User PHP Sample:

$userToDelete = '<email address of the user to delete>';

$userObject = $springCM->ContactFind(array(
 'token'=>$token,
 'SearchText'=>$userToDelete,
 'IncludeDeleted'=>false
));

$userObject = $userObject->ContactFindResult;

if (sizeof($userObject->SCMContactInfo) > 0);
{
 $springCM->Delete(array(
 'token'=>$token,
 'type'=>'User', // could also be 'Contact'
 'id'=>$userObject->SCMContactInfo->Id
));
}

Another common scenario is to search for a user and retrieve some information about them. This example

searches for a user and if the user is found, displays the user's group memberships.

Note: Even though the method names are ContactFind and GroupGetByContact, they will work with both

SCMContact and SCMUserAccount objects.

© 2013 SpringCMSM 64

Find user and list group memberships PHP Sample:

<?php

// The GroupGetByContact method requires that we pass it an object derived from
// SCMContactInfo
// In order to use derived objects against a WSDL in PHP, we have to set up the class
hierarchy
$classMap = array('SCMContactInfo'=>'ContactInfo',
 'SCMUserAccount'=>'UserAccount',
 'SCMContact'=>'Contact');

// The parent class ContactInfo has numerous fields, but Id is the only one that's
required
class ContactInfo {
 public $Id;
}

// Contact does not have any required fields beyond what's on ContactInfo
class Contact extends ContactInfo {}

// Role and Status are required fields on a UserAccount object; the rest can be left null
class UserAccount extends ContactInfo
{
 public $Role;
 public $Status;
}

// pass the class mapping into the SoapClient;
$springCM = new
SoapClient('https://uat.springcm.com/atlas/webservices/v12/SpringCMService.asmx?wsdl',
 array('classmap'=>$classMap));

$authResult = $springCM->AuthenticateNonDefault(array(
 'userName'=>'<your id>',
 'password'=>'<your password>',
 'AccountId'=>'<your account id>',
 'apiKey'=>'<your api key>'
));

// Get the inner object from the SOAP response
$token = $authResult->AuthenticateNonDefaultResult;

$userToFind = '<email address of the user to find>';

$userObject = $springCM->ContactFind(array(
 'token'=>$token,
 'SearchText'=>$userToFind,
 'IncludeDeleted'=>false
));

// Get the inner object from the SOAP response
$userObject = $userObject->ContactFindResult;

if ($userObject->ContactInfo != null);
{

© 2013 SpringCMSM 65

 $userAccount = new UserAccount();
 // Populate required fields from the retrieved record
 $userAccount->Id = $userObject->SCMContactInfo->Id;
 $userAccount->Role = $userObject->SCMContactInfo->Role;
 $userAccount->Status = $userObject->SCMContactInfo->Status;

 $groupsResult = $springCM->GroupGetByContact(array(
 'token'=>$token,
 'contact'=>$userAccount
));
}

?>

This next example shows how to work with groups. It will check if a group exists. If not it will create it and then

adds a user to it.

Find or Create Group and Add Users PHP Sample:

 <?php
// Group creation and management uses the Save method, which allows for creation or
// alteration of any object within SpringCM.
// Since this method takes a SCMBaseObject array, expecting that the actual objects
// passed will inherit SCMBaseObject,
// we have to define PHP classes for the base and derived objects and map them to types
// defined in the WSDL.
$classMap = array('SCMBaseObject'=> 'BaseObject',
 'SCMGroup'=>'Group',
 'SCMContactInfo'=>'ContactInfo',
 'SCMUserAccount'=>'UserAccount'); // create the mapping

class BaseObject {
 public $Id;
 public $Name;
 public $ObjectType;
}

class Group extends BaseObject {
 public $GroupType;
 public $Members;
 public $IsPrivate = false;
}

class UserAccount extends BaseObject {
 public $FirstName;
 public $LastName;
 public $Email;
 public $Role;
 public $Status;
}

// Authenticate

© 2013 SpringCMSM 66

$springCM = new
SoapClient('https://www.springcm.com/atlas/webservices/v12/SpringCMService.asmx?wsdl'
 , array('classmap'=>$classMap)); // pass the class mapping into the SoapClient

$authResult = $springCM->AuthenticateNonDefault(array(
 'userName'=>'<your id>',
 'password'=>'<your password>',
 'AccountId'=>'<your account id>',
 'apiKey'=>'<your api key>'
));
// Get the inner object from the SOAP response
$token = $authResult->AuthenticateNonDefaultResult;
$groupName = '<name of the group to update>';
$userEmail = '<email of the user to add>';

// Find the group. This will find any group with a name containing the search string.
$groupResult = $springCM->GroupFind(array(
 'token'=>$token,
 'name'=>$groupName,
 'IncludeDeleted'=>false
));
$groupResult = $groupResult->GroupFindResult;

// Determine whether to add the user to an existing group, create a new one, or do
// nothing (if the user is already in the group)
$userInGroup = false;
if (property_exists($groupResult, 'SCMGroup'))
{
 $groupObject = $groupResult->SCMGroup;
 // If the group has no members, create an array to hold
 // the new member we'll add later
 if (!property_exists($groupObject->Members, 'SCMContactInfo'))
 {
 $groupObject->Members->SCMContactInfo = array();
 }
 // If the group has exactly one member, the Members object does not contain an
 // array but a single SCMUserAccount
 // But when we call back to SpringCM, we have to pass an array
 if (sizeof($groupObject->Members->SCMContactInfo) == 1)
 {
 $groupObject->Members->SCMContactInfo = array($groupObject->Members-
>SCMContactInfo);
 }
 // If the group has members, check to see if the member to be added is already
 // there and set a flag if so
 if (sizeof($groupObject->Members->SCMContactInfo) > 0)
 {
 foreach ($groupObject->Members->SCMContactInfo as $userAccount)
 {
 if ($userAccount->Email == $userEmail)
 {
 $userInGroup = true;
 break;
 }
 }

© 2013 SpringCMSM 67

 unset($userAccount);
 }
}
else
{
 // No group found by the name requested; add new group
 $groupObject = new Group();
 $groupObject->Name = $groupName;
 $groupObject->ObjectType = 'Group';
 // Could also be 'Distribution' if you want a distribution group
 $groupObject->GroupType = 'Security';
 $groupObject->Members = new stdClass();
 $groupObject->Members->SCMContactInfo = array();
}

if (!$userInGroup)
{
 // Get additional information about the user to be added
 $userObject = $springCM->ContactFind(array(
 'token'=>$token,
 'SearchText'=>$userEmail,
 'IncludeDeleted'=>false
));
 // Have to copy the info from ContactFind into
 // a new object of the type defined above.
 $userObject = $userObject->ContactFindResult->SCMContactInfo;
 $userToAdd = new UserAccount();
 foreach($userObject as $property => $value)
 {
 $userToAdd->$property = $value;
 }
 // Add the new member to the array
 $groupObject->Members->SCMContactInfo[] = $userToAdd;

 // Call back to SpringCM with the updated SCMGroup
 $springCM->Save(array(
 'token'=>$token,
 'ToSave'=>array($groupObject),
 'CreateIfNew'=>true
));
}
?>

© 2013 SpringCMSM 68

The ResetPassword method can be used to send password reset or activation emails.

Reset Password PHP Sample:

<?php

class ContactInfo {
 public $Id;
 public $ObjectType;
}
class User extends ContactInfo {
 public $FirstName;
 public $LastName;
 public $Email;
 public $Role;
 public $Status;
}

$classMap = array('SCMContactInfo'=>'ContactInfo', 'SCMUser'=>'User');

$springCM = new
SoapClient('https://uat.springcm.com/atlas/webservices/v10/SpringCMService.asmx?wsdl',
 array ('classmap'=>$classMap));

$authResult = $springCM->AuthenticateNonDefault(array(
 'userName'=>'<your id>',
 'password'=>'<your password>',
 'AccountId'=>'<your account id>',
 'apiKey'=>'<your api key>'
));

$token = $authResult->AuthenticateNonDefaultResult;

$userId = '<email of the user to reset>';

$userResult = $springCM->ContactFind(array(
 'token'=>$token,
 'SearchText'=>$userId,
 'IncludeDeleted'=>false
));
$userResult = $userResult->ContactFindResult;

$scmUser = new User();
foreach($userResult->SCMContactInfo as $property => $value)
{
 $scmUser->$property = $value;
}

$springCM->ResetPassword(array (
 'token'=>$token,
 'user'=>$scmUser
));

?>

© 2013 SpringCMSM 69

About SpringCM

SpringCM is the leader in Content Cloud Services for the enterprise. Enterprises need to do more than store and

share content—they need to put content to work to accelerate business outcomes. SpringCM applications make it

easy to collaborate inside and outside the enterprise, work on mobile devices, sync content, and interact with

relevant documents, images, drawings, audio, and video in the application you’re using to get work done,

including Salesforce, SharePoint, and Office.

Organize, add, find content

Share content, collaborate

Work with content on mobile devices

Safely keep content synced

Streamline content-intensive processes

For more information, please email: support@springcm.net or call 877.362.7273

SpringCM is a trademark of SpringCM Corporation. All other marks are the property of their respective owners.

mailto:support@springcm.net

